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I have attached a preliminary performance study of all 15 AES candidates.
 <<Yet Another Performance Analysis of the AES Candidates.doc.asc>>

I have also reproduced the generation of Serpent S-boxes.  I believe that
all stated criteria were met except the non-linearity for one output of 6 of
the 8 S-boxes. This may be an bug on my part, or on the part of the
submitter's program, or simply a documentation problem.

anf non-linearity for sbox 0:  (0: 3)  (1: 3)  (2: 3)  (3: 2)
anf non-linearity for sbox 1:  (0: 3)  (1: 3)  (2: 2)  (3: 3)
anf non-linearity for sbox 2:  (0: 2)  (1: 3)  (2: 3)  (3: 3)
anf non-linearity for sbox 3:  (0: 3)  (1: 3)  (2: 3)  (3: 3)
anf non-linearity for sbox 4:  (0: 2)  (1: 3)  (2: 3)  (3: 3)
anf non-linearity for sbox 5:  (0: 2)  (1: 3)  (2: 3)  (3: 3)
anf non-linearity for sbox 6:  (0: 3)  (1: 2)  (2: 3)  (3: 3)
anf non-linearity for sbox 7:  (0: 3)  (1: 3)  (2: 3)  (3: 3)
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Yet Another Performance Analysis of the AES Candidates
Gary Graunke (gary.graunke@intel.com)

We studied the AES candidate ciphers to get a rough idea of how they might perform on future
microprocessors.  Since the proposed lifetime of the AES cipher extends well beyond our current design
horizon, it was decided to simply arrive at a lower bound for each cipher on an idealized, albeit general
purpose computer architecture. This ruled out special purpose instructions that may only be useful to block
cipher implementation, but would not be otherwise used in other application areas. In addition, some
limitations may be imposed by economics, whether the resource cost becomes exponential as the number of
resources is increased.

The target machine operations are micro-operations that have been implemented in the past directly in
hardware in one clock cycle, with the exceptions of fetching data from cache/memory, and multiplication.
These last two operations were assigned a latency of four clock cycles. We assumed that adequate atomic
ALU data widths were supported, up to 64 bits, at the ideal latency. We expect full pipelining of the fetch
and multiply operations.  Multiple operations can be issued in a vector, VLIW, or data-flow manner. Since
the kernels are for the most part branch-free, we did not have to make any assumptions with regard to
branch prediction or speculative execution. There are no assumptions of instruction decode problems,
instruction encoding, register limitations, or other factors that might make the actual performance exceed
the lower bound on many of today’s existing architectures.

The implementation strategy and micro-operations were manually selected. The basis of most algorithms
owes much to the optimized C language implementations provided by the algorithm submitters, as well as
the C language implementations of Brian Gladman et al. We implicitly assumed that only one memory
fetch unit would be available, so reduction operations were coded linearly rather than in a reduction-tree
form.

We only examined encryption due to resource constraints.  We note that CBC decryption can add a
significant amount of parallelism to boost performance, whereas CBC encryption is intrinsically serial.
We also did not examine key set up times, and assumed that any reasonable amount of work that enhanced
encryption at the expense of key setup would be done. A program was written for each cipher to generate
the code for the entire encryption of one block, round by round, and compute the metrics.

Finally, the resulting pseudo-code was not tested by simulation to ensure correctness, so there is some
chance of error compared with compiled code. However, for some ciphers, some of the scheduled pseudo-
code was used to construct actual implementations on existing architectures, and these were tested using
the supplied data sets.

We propose two metrics of performance. The first is the critical path of encrypting one block in clocks. The
second is the total number of micro-operations that are required, counting vector operations as a single
micro-operation. The critical path is a property of the algorithm that cannot be enhanced by any amount of
hardware. The operation count provides a better measure of performance for low-end machines.  Dividing
the operation count by the number of functional units (ignoring asymmetries that might exist) provides a
lower bound for mid-range machines.



The results are summarized in table 1 for the 128-bit key and 128-bit block size.

Cipher Critical Path (in clocks) Micro-operations
Rijndael 86 616
Crypton 102 736
E2 120 880
Twofish 166 600
RC6 185 296
DFC 232 320
MARS 258 528
Safer+ 265 669
Cast256 316 824
HPC 386 260
Loki97 500 1140
Serpent 556 1328
Magenta 745 6892
Deal 1632 3576
Frog 1796 1562

Table 1

Several cipher implementations warrant specific notes.

The Serpent implementation used Brian Gladman’s realization of the 4x4 S-boxes as bit-slice operations.
No effort was made to minimize the critical path of the S-boxes. These may be more tuned to reducing
operation count. With 18 rounds, the critical path is 311 clocks, and the cipher uses 751 operations.  We did
not assume a specialized 4X4 S-box instruction, which may be feasible to implement in practice.

The Twofish version did not have pre-compiled keys—fixed code was used.

The DFC implementation assumed a 64X64->128 bit integer multiply.  We note that this is generally
useful, and also useful for public key algorithms using modular arithmetic.  Many existing implementations
use only 16 or 32-bit multiplies.

The Safer+ pseudo-code used vector operations, except for the S-box memory fetch operations.

HPC was assumed to have the appropriate 64-bit operations.

Deal was not implemented—we simply multiplied the DES numbers by 6.  If the initial and final
permutations were removed, DES would get a critical path of 228, and an operation count of 532.

Frog may benefit somewhat as compared with the reported critical path number if hardware were
constructed to speculatively execute in spite of potential load/store memory conflicts. Otherwise, the data-
dependent, byte-oriented memory accesses are problematic on higher-end machines.

In summary, we found somewhat optimistic lower bounds for each of the candidate ciphers where
computer architecture and compilation effects were minimized. Actual implementations that have been
reported for current architectures and compilers differ materially for many ciphers. For some, such as DFC,
Safer+, and HPC, there is an obvious explanation.  For others, the case is less clear. Nevertheless, we
believe it is useful to balance highly tuned implementations on existing architectures with the limitations
imposed by the cipher itself on long-term performance when evaluating software cipher performance.


